The capacity of single-track rural lanes: an initial investigation

Richard Sweet
Senior Traffic Modeller, Somerset County Council

TRICS Transport & Development Conference
13 Nov 2012
1) Introduction
2) Objectives of the research
3) The literature
4) Methodology
5) Results and Discussion
6) Conclusion
7) What next?

The capacity of single-track lanes
Argument by anecdote...

The TA:

“I have seen no record that this [existing] use has caused serious traffic congestion”; and

“Where congestion does not occur, it is acknowledged that up to 10% additional traffic will not make significant impact”; so

“It is clear that the proposal should be considered acceptable”

The residents:

“The new facility has generated a significant increase in traffic”

“The volume and size of lorries has increased... this beautiful countryside should not be marred with so many vehicles”

“The lorry traffic on [this road] is... constant”
...makes for confused officers
The capacity of single-track lanes

1) Introduction
2) Objectives of the research
3) The literature
4) Methodology
5) Results and Discussion
6) Conclusion
7) What next?
What I wanted to do

1. Determine whether S-Paramics can produce results correlating with those found in previous research

2. Determine at what level of flow the S-Paramics model suggests an effective capacity is reached

3. Determine whether tidal flow has a significant impact on the capacity of a single track road
The capacity of single-track lanes

1) Introduction
2) Objectives of the research
3) The literature
4) Methodology
5) Results and Discussion
6) Conclusion
7) What next?
Walker et al. (1967)

LR71 Single Track Roads in the Scottish Highlands
(Further Traffic Studies 1964)

• Four stretches of Scottish lane (reg surveys)

• Found capacities 100 – 220 veh/hr

• Found linear relationship...
Fig. 6. COMPARISON OF SPEED-FLOW RELATIONSHIPS
Walker et al. (1967) (cont’d)

\[V = A - 0.085q \]

Fig. 6. COMPARISON OF SPEED–FLOW RELATIONSHIPS

- **Free-flow speeds** \((A)\)
- **Capacities** \((q)\)
Walker et al. (1967) (cont’d)

\[V = A - 0.085 \, q \]

But…

• Equation fails where \(A < 20 \text{ mph} \) (assumed to be minimum acceptable speed)

• Why should relationship be linear when approaching capacity?
Burrow (1977)

Delays on single-lane roads with passing places (Working Paper TSN 29R)

- Fortran model
- Test Track experiment
Burrow (1977) (cont’d)

Fortran Model

- 180m stretch of ‘road’ with ‘passing spaces’
- Many assumptions
 - Perfect visibility (i.e. no backing up)
 - 15 mph
 - No acceleration/deceleration
- Found capacities 100 veh/hr – 300 veh/hr depending on number of spaces
Burrow (1977) (cont’d)

Test track experiment

• Still assumes perfect visibility and slow speeds - but:
 • Acceleration/deceleration
 • Human element

• Delay almost always higher than in simulation

• Discrepancy greater when flows unbalanced
Summary of the literature

• Very limited research

• Empirically derived relationship $V = A - 0.085q$
 • But limited sample
 • Fails at low speed
 • Over 40 years old!

• Experimental/simulated results make very broad-brush assumptions

• Consensus of capacity approx 100-300 veh/hr
The capacity of single-track lanes

1) Introduction
2) Objectives of the research
3) The literature
4) Methodology
5) Results and Discussion
6) Conclusion
7) What next?
Methodology

An S-Paramics model was developed to try to replicate the Burrow (1977) model:

- Two-lane approaches separated by 180m single-lane stretch
- 0-3 passing spaces
- ‘Speed limit’ at 15 mph
- 100% cars
Methodology (cont’d)

• Modelled using signals and loops
• Need for a ‘release valve’ to be coded
• Demand matrices to replicate previous modelling
The capacity of single-track lanes

1) Introduction
2) Objectives of the research
3) The literature
4) Methodology
5) Results and Discussion
6) Conclusion
7) What next?

WWW.SOMERSET.GOV.UK
Average delay in S-Paramics model vs Burrow model for corresponding flows
Paramics vs 1977 model

- Limited correlation

- What are the differences between Paramics and Burrows’ model (1977)?
 - Modelling of acceleration/deceleration
 - Interaction between vehicles

\[y = 0.3535x + 8.9878 \]
\[R^2 = 0.0753 \]
Paramics vs 1977 experiment

Delay in S-Paramics vs Burrow experiment for same flows and passing spaces
Paramics vs 1977 experiment

- Limited correlation (again) – very low R^2
- What are the differences between Paramics and Burrows’ experiment (1977)?
 - In theory, less than for model
 - Small sample
 - Psychology?
- Or – is my Paramics model simply no good?!
Paramics vs 1964 observations

Average speed vs flow in S-Paramics (2 passing spaces)

\[y = -0.0105x + 14.854 \]

\[R^2 = 0.4888 \]
Paramics vs 1964 observations

Average speed vs flow in S-Paramics

No passing spaces

2 passing spaces

1 passing spaces

3 passing spaces

$y = -0.0069x + 14.195$

$R^2 = 0.2005$

$y = -0.0106x + 14.854$

$R^2 = 0.4688$

$y = -0.0143x + 15.607$

$R^2 = 0.5209$

$y = -0.0099x + 14.156$

$R^2 = 0.4353$
Paramics vs 1964 observations

- In 1964 Walker et al. found:
 \[V = A - 0.085 \ q \]

- Similar linear relationship in Paramics, but a much lower coefficient:
 \[V \approx A - 0.01 \ q \]

- Could be partly due to lower speed limit, with \(A = 15 \); much lower than in Scottish study

- Correlation relatively poor
Average speed vs flow in S-Paramics (equal flow in each direction)
The capacity of single-track lanes

1) Introduction
2) Objectives of the research
3) The literature
4) Methodology
5) Results and Discussion
6) Conclusion
7) What next?
Can S-Paramics produce results correlating with those found in previous research?

- S-Paramics replicates to some extent a linear relationship
 \[V = A - g q \]
 but with a very different value of \(g \)
- I suggest this may fail as \(q \) approaches link capacity
Conclusion (2)

At what level does S-Paramics suggest an effective capacity is reached?

• Delay appears to increase significantly at 300-400 veh/hr - but represents ideal conditions

• In reality is the range 100-220 (Walter et al., 1967) correct? What about changes in vehicle performance? Vehicle size and mix?
Conclusion (3)

Will tidal flow have an impact on capacity?

• It does appear so

• Lowest capacity appears to be around a 1:1 ratio
1) Introduction
2) Objectives of the research
3) The literature
4) Methodology
5) Results and Discussion
6) Conclusion
7) What next?
Future research

• Observational studies
 • Bluetooth/ANPR/video?
 • Obtain data over an extended period of time at a range of sites
• Refine S-Paramics model
 • Different speeds
 • Vehicle mix
• Consider other forms of model
 • QUADRO?
 • Cell transmission model?
• Can problems with modelling reversing be overcome?
Finally...

- Every lane will be unique
- Based on the available information, I believe that:
 - Effective capacity of a single-track lane with passing spaces lies somewhere between 100-300 veh/hr
 - Tidal flow is significant
- This isn’t the ‘final word’ but an attempt to encourage further investigation and discussion.
- Have I missed anything?!
Thank you for listening

And to…
• Stephen Walford (Somerset CC)
• Emma Cockburn (LB Havering)
• Malcolm Calvert (SIAS)
• Staff of the Somerset Library Service

Written paper available: http://sdrv.ms/UPR3Up
Contact: RSweet@somerset.gov.uk

Images by the author or under Creative Commons Licenses
[Jack M](http://www.somerset.gov.uk) - Alexis Cousteau - Jamie McIntyre - Eric Jones - Peter Turner - Paul Anderson - xkcd.com